Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

Modular Articulated Tabletop-game System

Introduction

Board games typically require two or more players but assembling a play group for a game is not always
possible due to timing and location constraints. Employing an autonomous robotic system to take the
place of an absent human player can allow a single human to enjoy a gaming session at any time. Robotic
systems also make it possible for human players who are not physically present or who may have mobility
constraints to participate in tabletop gaming.

This project aims to develop a robotic platform that can allow a human to play a two-person board game
such as Tic-Tac-Toe or Chess against an automated system. The Modular Articulated Tabletop-game
System (M. A.T.S.) will be capable of seeing a game board, analyzing the board position, algorithmically
determining the optimal next move based on user defined parameters, and operating a robotic arm to
make the algorithmically determined move.

The project aims to be expandable to other board games, therefore a modular approach is taken in
developing the code. As such, the first game the completed system is designed to play is Tic-Tac-Toe. The
game of Tic-Tac-Toe is considered solved® and writing a program to play it perfectly is relatively trivial
when compared with the challenge of developing a program to play Chess or Go at a human level or to
play more complex games involving cards, dice, and pieces of different sizes, shapes and colours. More
complex games can be added to the system in future versions once the proof-of-concept version playing
Tic-Tac-Toe has been successfully implemented.

Function Description

M.A.T.S is able to perform many of the same functions as a human opponent. It has a computer vision
system to examine a game board and interpret what it sees as a game state. An on-board game engine
will determine the next best move. The game engine will be configurable to change the difficulty or
playstyle of the system thus affecting the next-best-move algorithm. An articulated robotic platform will
make moves based on the output of the game engine.

The user will be able to configure the game engine via two input buttons to select the game, difficulty and
turn order. A switch will allow the user to turn the system on and off. LEDs will indicate the user’s selection
(future versions will employ LCD screens for improved usability). The LEDs will also indicate when the
system is in a “waiting position” (i.e. when the system is waiting for the human to confirm it has made a
move) and when the system is in a “running position” (i.e. when the system is analyzing the board,
deciding which move to make, and operating the robotic arm).

The system will be consistently watching the game board for new game states to determine when the
human has made a move. When it is in the waiting position it will read the state of the game board every
five seconds and if it detects a new valid board configuration has been created it will switch to the running

1. A solved game is one where if both players play without making mistakes, the game is guaranteed to result
in a either A) a draw or B) a win for a pre-determined player based on initial conditions such as the game’s setup and
the turn order. An elegant demonstration of perfect play strategy for Tic-Tac-Toe was drawn by Randall Munroe and
can be seen here: https://xkcd.com/832/

https://xkcd.com/832

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

position automatically. The user can also indicate that they have made a move or chosen to skip their turn
via a button press. If the system detects an invalid game state this will be indicated to the human player
via the user interface LEDs.

When M.A.T.S. has made a move, it will return to the waiting position. On shutdown, the system will
return to an “off” position. The off position returns the robotic arm’s encoders to a baseline position for
accurate encoder reading in future activations. It also prevents the system from responding to sensor
inputs. On startup, M.A.T.S. will run through a calibration cycle to ensure that all of its motors are properly
connected and to establish a zero point for each joint’s encoder. The calibration cycle will ensure that the
platform operates consistently even if it was shut down improperly (i.e. if there was a sudden loss of
power preventing the arm from entering an off position).

Project Requirements

Knowledge
Achieving full functionality of the system will require knowledge of the following topics:

1. Articulated Robotic Platforms
The basic functionality of the system requires a robotic platform that will be operated based on
the input from the game engine. The platform will be sufficiently flexible and powerful that it can:
a. Smoothly transition through a series of positions
b. Utilize a gripper or similar pick-and-place actuator to manipulate game pieces

The user’s experience with the overall system will also be improved by the robotic system
remaining compact and robust (i.e. the system should occupy a small footprint on a desktop and
be able to withstand small bumps or jostles from regular use. Likewise, cables should be securely
fastened and kept free of moving components to avoid damage and jamming.

The robotic platform will be an articulated robotic arm with multiple degrees of freedom. The arm
will be electrically actuated by DC motors.

2. Computer Vision

The system requires the game engine to be able to see the game board and translate the image
to a game state. The system will capture an image of the game board. Pattern recognition
algorithms will differentiate the game board, player one’s pieces and player two’s pieces. The
vision system converts the captured image into a game-state from the identified patterns. The
computer vision should operate at minimum in well-lit conditions. It will be required to distinguish
between pieces of different players by analyzing the black/white gradients of the image. The initial
functionality of the pattern recognition system will be to identify dark shapes (circles and squares)
on a light background with a dark 3x3 grid superimposed on the light background. Future
iterations can increase the complexity of the identified shapes, background, lighting conditions,
colour, etc.

3. Game Engine

The system’s “mind” can be divided into two parts. The game engine is the module of the system
which decides where to move the robotic platform to next. This is done by analyzing the game-

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

state captured by the vision system and determining the optimal next move based on a pre-
programmed algorithm. The game engine will utilize a simple backtracking Min/Max approach.
This approach assigns a score to all possible moves based on the board’s state and determines
which move is best for the opposing human player. It then selects the move that the minimizes
the score for the human player’s potential moves. There are many examples of such a program
available for free and this project, rather than creating one from scratch, will adapt an existing
program to take game states as an input rather than individual player moves.

The game engine’s output will be a specific position or series of positions that is then passed to
the motor controller module.

4. Motor Controller
The second part of the system’s “mind” is the motor controller. It decides how to move based on
the output of the Game Engine module. The motor controller integrates feedback from digital
encoders at each joint in the robotic arm into its control function to determine the position and
speed of the robotic platform’s joints as it moves in 3D space.
A transfer function will be written for each joint to control the speed of the arm’s motions. The
transfer function will enable precise and consistent control of each joint position and prevent the
arm from undershooting or overshooting its target position. Such functionality is crucial to ensure
the overall system functions as intended.

5. Microcontroller
If the Game Engine and Motor Controller comprise the system’s “mind” then the Microcontroller
can be considered the system’s “brain. Communication protocols such as Serial Peripheral
Interface (SPI) and I12C are used to facilitate communication between the microcontroller and the
peripherals selected for the project.

6. System Integration
The modules and related hardware in topics 1 through 5 will be integrated in order to achieve full
system functionality. This involves utilizing new code, existing code and 3™ party software as well
as connecting components from different manufacturers.

Hardware

The project will utilize the following hardware components:

1.

Romeo Development Board V1.3

The Romeo Board V1.3 is an all-in-one development board with an Atmega328p microcontroller
at its core. It has 16 digital I/0 pins and an additional 6 analog 10 pins (which may be configured
as digital pins) and is capable of supporting peripherals via SPl and I°C.

MCP23517 Expander with Serial Interface

The MCP23517 provides a 16-bit general purpose 1/O expansion via an SPI connection. Multiple
MCP23S17 expanders can be connected via the same SPI connection to a master device. This
project will utilize two expanders to achieve the necessary number of /O pins for the peripherals.

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

4.

If more pins are required, a third expander can be added at low cost and with minimal
modification to the project’s code.

Robotic Arm Edge (OWI 535)

The base of the platform will be an articulated robotic arm manufactured by OWIKIT. The Robotic
Arm is actuated by five DC motors. One motor is located in the “base”, one is located in the
“gripper”, and there is one at each joint: the “shoulder, the “elbow” and the “wrist”. The location
of each motor is labelled in Figure 1.

L298 motor Driver

The L298 motor driver is used to supply the necessary power to the Robotic Arm’s motors. Signals
from the microcontroller (two signals per motor) allows the motor driver to operate the motors
forwards and backwards by reversing their supplied polarity. Each L298 is capable of operating 2
DC motors independently. As such, this project will require 3 motor drivers in total.

KY-040 Rotary Encoder

The KY-040 rotary encoder reads the position of two switches and returns an angular position to
indicate how much its knob has been turned. There are four encoders required for this project:
one for each joint and the base. The position of the robotic arm’s wrist will be determined by
three limit switches due to space limitations.

0OV7670 Camera Module

The OV7670 Camera module is a low voltage, 0.3 Megapixel camera module. It is capable of
outputting 30 frames per second (though this project will require a much lower framerate). It will
be controlled via the Serial Camera Control Bus (SCCB) which is an 12C interface.

Software

The project will not require any specialized or proprietary software to develop or run. The software will
be written in C using free or open-source libraries and compilers. Third party code may be adapted to the
project when necessary.

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

Component Selection

Components were selected for this project by the following criteria in order of decreasing importance:
Functionality, Cost and Availability. For instance, more compact encoders likely exist which would improve
the form and functionality of the robotic arm but these were either prohibitively expensive or had
excessively long lead times. The Ky-040 Rotary Encoders met the requirements of having a physical knob
that could be interfaced with the robotic arm’s joints (with a little creativity), were available quickly and
were inexpensive compared to alternatives.

Assembly
Wiring Diagram
The M.A.T.S. wiring is outlined in Figure 2. Some details have been omitted for clarity.

User interface

9v switches and
buttons, Motor Encoder 1-4
Driver 3, Motor 5 {1
A
4
Lt
= Ormoymu—o Sl O reomtmn—o Y —
CEiaaacaa CEiaaaaaa
SEEEEEEES g g FEOEEEEEE g g
= o
I 5 N T 3 N T
2 g | 2 5
i < ol b 1Y el
@ & it S N i
o 9 = @ =} =
2 s @ 3 s @
= = = =
B < = <
2393225 gredzeaa g
LooEoEoaE — CoonEnao
e —
In! !
GND Voo
a7
A5
25
2
23 Romeo
A V1.3 A 4 Limit Switches 1-7
20 SCKDIZ
— hema IS0 D1z Motor Driver 1-2, *Note that Sw 6 - 7
— ;.gl.\ k‘DSSE! ga — Motor 1 -4 share a common pin
D9 08 O7 D6 D5 D¢ D2 2 D1 O
==
|
.
D0 D7 D6 D5 D4 D3 D2 DI XCLK VS HREF PCLK SCL
308
RESET|
0V7670 33V
GND PWDN

Figure 2: Wiring Diagram of the M.A.T.S.

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

Robotic Arm Edge

The Robotic Arm Edge will be assembled per the manufacturer’s instructions. The encoders and limit
switches will be attached to their respective joints via a combination of 3D printed and handcrafted
components. Due to space constraints, two gears were 3D printed to interface the rotation of the base
motor with the base encoder. The methods used to interface the KY-040 encoders to the Robotic Arm can
be seen in Figure 3.

,)704"

\J

ARCITA A -
Figure 3: Interfacing the encoders with the Robotic Arm Edge

Module Testing

Unit tests and regression tests will be designed and implemented during the project’s development.

Robotic Arm Edge
1. Basic robotic arm functionality including:
a. Opening and closing the gripper;
b. Rotating the base 270 degrees;
c. Rotating the joints a minimum 180 degrees;

Motor Drivers
1. Powering motors from steady state DC supply.
2. Smooth operation of the motors via Pulse Width Modulation (PWM).

Limit Switches
1. Detecting limit switch button push.

Digital Encoders
1. Reading angular position of robotic arm joints.

MCP23517

1. Reading inputs and writing to outputs of MCP23S17 via the SPI connection.
2. Controlling multiple MCP23S17 expanders via the SPI connection.

Tic-Tac-Toe Engine
1. Checking the current game state against the previous game state for validity.
2. Selecting the next best move based on a game state input.
3. Changing the parameters used to select the next best move based on a user input.

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

Vision System
1. Reading inputs from OV7670 camera module via the 1°C connection and save the inputs as a
Bitmap image.
2. Detect board shape and piece shapes based on brightness values in the captured Bitmap image.
Detect when the board has been changed.
4. Create game state based on visual input.

w

User Interface
1. The switch powers off the system (enters a state where it does not respond to any inputs or
outputs) and returns the robotic arm to an off position.
2. The buttons select the game mode and increase or decrease the difficulty setting of the game
engine.
3. The game mode and difficulty setting are displayed via LEDs.

Regression Testing

Regression testing is a required step during development of the M.A.T.S. In order to ensure previous bugs
do not recur as features are implemented. Regression testing also validates the system’s primary
functions.

Module Integration
The following regression test cases will validate modules have been successfully implemented to the
project.

1. Resetting encoder angular position to zero when limit switch button push is detected.

2. Reading encoder inputs and limit switch inputs via the MCP23S17.

3. Controlling motor drivers via the MCP23S17 and a control system that limits motor speed and
runtime based on the target encoder position.

4. Passing a game state from the vision system to the Tic-Tac-Toe Engine.

5. Passing a movement command from the Tic-Tac-Toe Engine to the motor controller to actuate
the joints in pre-determined manner based on the game move selected.

6. The startup and shutdown cycles reset the encoder positions and turn the sensors on or off.

Typical Use Cases

Regression testing will be used to validate the system functions as intended.

1. On startup the robotic arm performs a calibration cycle that resets all encoder positions.

2. After the calibration cycle is complete, the user selects a game mode and difficulty setting via the
user interface.

3. The vision system detects when the user has made a move and passes the game state to the game
engine. The game engine determines the next best move based on the user selected difficulty
setting and passes the required position of the robotic arm to the movement to the motor
controller.

4. When the game engine detects the game state is a victory for either the human player or for the
M.A.T.S., the motor controller runs either a “defeated shake” or “victory nod” cycle and returns
to the “waiting” position.

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

Corner Cases

1. If the game engine detects an invalid game state, the LEDs light up in a specified pattern to
indicate to the human player that an invalid move has been made.

Prototype Challenges
The current prototype of the MATS faces the following challenges:

1. Articulation of the robotic arm requires several wired connections. The wires presently used
during development are moderately too stiff and occasionally bind on the robotic arm or detach
from the component pins during operation. Development of future prototypes will use more
flexible connections and/or an alternative method of securement.

2. During development of the prototype, dead pins were discovered on two components: One of
the MCP23S17 expanders and one of the encoders. These components require replacement prior
to further development.

Conclusion
The current prototype of the MATS is shown in Figure 4.

Figure 4: Fully assembled robotic arm prototype

Current Functionality
The current functionality of the M.A.T.S. is as follows:

1. The robotic arm is fully assembled with the requisite peripherals.
2. Two MCP23517 expanders have been successfully integrated to the Romeo development board
to increase the number of GPIO pins available for peripherals.

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems
Korey Francis 500501327

2024-05-31
3. L1298 Motor drivers and the associated motors can be successfully powered from a steady state
9V DC power supply. Five motors can be controlled by the user via push buttons and switches.
4. Seven limit switches have been integrated at the robotic arm’s various joints.
5. A program has been developed to read the output of the encoders.

Outstanding Work

The following work remains to be completed:

1.

All encoders are to be integrated to the motor controller program via the MCP23517 GPIO
expanders. Testing for complete runtime functionality will ensure the encoders consistently read
the same angular positions.

The robotic arm will move through set positions based on user input and the encoder values.
The OV7670 camera module is to be connected to the Romeo development board. The camera
module’s connection will be successful once it outputs a clear image of sufficient resolution for
future processing.

Functions will be written to capture the output of the camera module as a bitmap image.
Functions will be written to analyze the light/dark values of the captured image for pre-
determined patterns.

Functions will be written to output the identified patterns as a game state.

A game engine will be adapted from existing code to analyze a game state and select the optimal
next move.

A function will be written to pass the optimal next move to the motor controller function as an
input.

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

Appendix A — Source Code
Main_6.c

1 //Libraries used

2 #include <avr/io.h>

3 #include <util/delay.h>

4 #include <stdlib.h>

5 #include <stdio.h>

6 #include <avr/interrupt.h>

7

8 //Definitions

9 #define F _CPU 16000000UL

10 //SET STICTION HERE:

11 #define F_STICTION 50 //forward stiction threshold for PWM
12 #define R_STICTION 50 //reverse stiction threshold for PWM
13

14 #define R ANGLE 0 //reset angle to zero degrees

15

16 //Definitions for MCP23S17 peripherals

17 #define SPI PORT PORTB

18 #define SPI DDR DDRB

19 t#define SPI_CS PB2
20 // MCP23S17 SPI Slave Device
21 #define SPI_SLAVE ID 0x40
22 #define SPI_SLAVE ADDR 1 0x00 // B2=0,A1=0,A0=0
23 #define SPI_SLAVE ADDR 2 0x01 // A2=0,A1=0,A0=1
24 #define SPI_SLAVE WRITE 0x00
25 #define SPI_SLAVE READ 0x01
26 // MCP23S17 Registers Definition for BANK=0
27 #define IODIRA 0x00
28 4#define IODIRB 0x01
29 4#define IOCONA 0xOA
30 #define GPPUA 0x0C
31 #define GPPUB 0x0D
32 4#define GPIOA 0x12
33 4#define GPIOB 0x13

34 #define GPBO 0x00

35 #define GPB1 0x01
36 //Function declarations
37

38 //Functions for MCP23S17

39 wvoid SPI_Write 1 (unsigned char addr,unsigned char data);
40 wvoid SPI Write 2 (unsigned char addr,unsigned char data);
41 unsigned char SPI Read 1 (unsigned char addr);

42 unsigned char SPI Read 2 (unsigned char addr);

43

44

45 //Functions for Motor Control via PWM

46 wvoid enablePowerControl (void); //Initialize counter for PWM output
47 wvoid disablePowerControl (void); //Disable PWM counter
48

49 uint8 t Ml (intl6_t Mot Power); //Change duty cycle M1
50 wuint8 t M2 (intl6_t Mot Power); //Change duty cycle M2
51 wuint8_t M3 (intlé_t Mot Power); //Change duty cycle Ml
52 uint8_t M4 (intl6é_t Mot Power); //Change duty cycle M2
53 uint8_ t M5 (intlé_t Mot Power); //Change duty cycle Ml
54 wuint8 t lin int(intlé_t x); //linear interpolation
55
56 //Functions for debugging with USART
57 woid transmitString(char *x);
58 woid transmitByte (char data);
59 woid printDec (float num) ;

60 wvoid initUART (uintlé_t baud);

61

62 wvoid initTimer2 (void) ;

63 wuint8 t get grayCode_1 (void);

64 //uint8 t get grayCode 2 (void);

65 //uint8 t get grayCode 3(void);

10

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

66 //uint8 t get grayCode 4 (void);

67 int get_angle(intlé_t pulseCount);

68

69 //GLOBAL VARIABLES

70 //uint8 t pinD;

71 uintlé_t dutyCycle;

72 uintl6é_t baud = 9600; //for intefacing with UART

73 char data; //for intefacing with UART

74 //For encoder control

75 uint8_t channelld, channelB; //, channelC, channelD, channelE, channelF, channelG, channelH;
76 volatile uint8_t phase, phase old, direction;

77 wvolatile int_fastl6é_t pulseCount 1; //, pulseCount 2, pulseCount 3, pulseCount 4 = 0;
78

79 uint8_t inp_ 1, inp_2, inp_3;

80
81 int main (void)
82 {
83 // Motor control variables
84 int angle 1; //, angle 2, angle 3, angle 4;
85 uint8 t pwm 1, pwm 2, pwm 3, pwm 4, pwm 5;
86 intlé_t M1 _Power = 60;
87 int signal;
88
89 // unsigned char inp 1,inp 2;
90
91 ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1);
92 // Free running Mode
93 ADCSRB = 0x00;
94 // Disable digital input on ADCO (PCO)
95 DIDRO = 0x01;
96 ADMUX=0x00; // Select Channel 0 (PCO)
97
98 // Initial the AVR ATMega328P SPI Peripheral
99 // Set MOSI (PB3),SCK (PB5) and PB2 (SS) as output, others as input
100 SPI DDR = (1<<PB3) | (1<<PB5) | (1<<PB2);
101 // CS pin is not active
102 SPI_PORT |= (1<<SPI CS);
103
104 // Enable SPI, Master, set clock rate fck/64
105 SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPR1) ;
106
107 // Initial the MCP23S17 SPI I/0 Expander
108 SPI Write 1 (IOCONA,0x28); // 1I/0 Control Register: BANK=0, SEQOP=1, HAEN=1 (Enable
Addressing)
109 SPI_Write_ 1 (IODIRA,0x00); // GPIOA 0-7 As Output
110 SPI Write 1 (IODIRB,0x3F); // GPIOB 0-5 As Input
111 SPI Write 1 (GPPUB, OxFF); // Enable Pull-up Resistor on GPIOB
112 SPI Write 1 (GPIOA,0x00); // Reset Output on GPIOA
113
114 SPI_Write 2 (IOCONA, 0x28); // I/0 Control Register: BANK=0, SEQOP=1, HAEN=1 (Enable
Addressing)
115 SPI Write 2 (IODIRA,OxFF); // GPIOA As 0-7 Input
116 SPI_Write_ 2 (IODIRB, OxFF); // GPIOB As 0-7 Input
117 SPI_Write 2 (GPPUA, OxFF); // Enable Pull-up Resistor on GPIOB
118 SPI Write 2 (GPPUB, OxFF); // Enable Pull-up Resistor on GPIOB
119 // SPI_Write 2(GPIOA,0x00); // Reset Output on GPIOA
120
121 initUART (baud) ;
122 initTimer2 () ;
123
124 transmitString ("\rSignal = \n");
125
126 while (1) {
127
128 inp 1=SPI Read 1(GPIOB); // Button 1-4 and Sw 1 and Sw 2
129 inp 2=SPI_Read 2 (GPIOB); // Encoder Inputs
130 inp 3=SPI_Read 2 (GPIOA); // Limit Switches. Note that pin 7 is dead
131
132 //Motor 1 and Motor 2
133 Pf((!((inp 1 & (1 << 4)) ==0)) & (! ((inp 1 & (1 << 5)) == 0))){

11

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems
Korey Francis 500501327

2024-05-31

134 if (signal==0) {

135 if((inp 1 & (1 << 0)) == 0) {

136 signal = 1;

137 enablePowerControl () ;

138 pwm 1 = M1(100);

139 angle 1 = get angle(pulseCount 1);
140 }

141 if((inp 1 & (1 << 1)) == 0) {

142 signal = 2;

143 enablePowerControl () ;

144 pwm 1 = M1l (-M1l Power);

145 angle 1 = get angle(pulseCount 1);
146 }

147 if((inp 1 & (1 << 2)) == 0) {

148 signal = 3;

149 enablePowerControl () ;

150 pwm_2 = M2 (M1 _Power);

151 angle 2 = get angle(pulseCount 2);
152 }

153 if((inp 1 & (1 << 3)) == 0) {

154 signal = 4;

155 enablePowerControl () ;

156 pwm 2 = M2(-70);

157 angle 2 = get angle(pulseCount 2);
158 }

159 }

160

161 else {

162 if (! ((inp 1 & (1 << 0)) == 0)) {

163 signal = 0;

164 M1 Power = 1;

165 disablePowerControl () ;

166 }

167 if (! ((dnp_ 1 & (1 << 1)) == 0)) {

168 signal = 0;

169 M1 Power = 1;

170 disablePowerControl () ;

171 }

172 if (! ((dnp_ 1 & (1 << 2)) == 0)) {

173 signal = 0;

174 M1 _Power = 1;

175 disablePowerControl () ;

176 }

177 if (! ((dnp_1 & (1 << 3)) == 0)) {

178 signal = 0;

179 M1 Power = 1;

180 disablePowerControl () ;

181 }

182 }

183 }

184 // Motor 3 and Motor 4

185 if(((inp 1 & (1 << 4)) == 0) & (! ((inp 1 & (1 << 5)) == 0))){
186 if (signal==0) {

187 if((inp_ 1 & (1 << 0)) == 0) {

188 signal = 5;

189 enablePowerControl () ;

190 pwm 3 = M3(100);

191 angle 3 = get angle(pulseCount 3);
192 }

193 if((inp 1 & (1 << 1)) == 0) {

194 signal = 6;

195 enablePowerControl () ;

196 pwm_ 3 = M3 (-Ml Power);

197 angle 3 = get angle(pulseCount 3);
198 }

199 if ((inp 1 & (1 << 2)) == 0) {

200 signal = 7;

201 enablePowerControl () ;

202 pwm_4 = M4 (M1 _Power) ;

203 angle 4 = get angle(pulseCount 4);

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems
Korey Francis 500501327

2024-05-31

204 }

205 if((inp 1 & (1 << 3)) == 0) {
206 signal = 8;

207 enablePowerControl () ;

208 pwm 4 = M4 (-70);

209 angle 4 = get angle(pulseCount 4);
210 }

211 }

212

213 else {

214 if (! ((dinp 1 & (1 << 0)) == 0)) {
215 signal = 0;

216 M1 Power = 1;

217 disablePowerControl () ;

218 }

219 if (! ((inp 1 & (1 << 1)) == 0)) {
220 signal = 0;

221 M1 Power = 1;

222 disablePowerControl () ;

223 }

224 if (! ((dnp_ 1 & (1 << 2)) == 0)) {
225 signal = 0;

226 M1 Power = 1;

227 disablePowerControl () ;

228 }

229 if (! ((dnp_ 1 & (1 << 3)) == 0)) {
230 signal = 0;

231 M1 Power = 1;

232 disablePowerControl () ;

233 }

234 }

235 }

236

237 // Motor 5

238 if (((inp 1 & (1 << 4)) == 0) & ((inp_ 1 & (1 << 5)) == 0)){
239 if (signal==0) {

240 if((inp 1 & (1 << 0)) == 0) {
241 signal = 9;

242 enablePowerControl () ;

243 pwm 5 = M5(100);

244 }

245 if((inp 1 & (1 << 1)) == 0) {
246 signal = 10;

247 enablePowerControl () ;

248 pwm_5 = M5 (-M1_Power) ;

249 }

250 }

251

252 else {

253 if (! ((dnp 1 & (1 << 0)) == 0)) {
254 signal = 0;

255 M1 Power = 1;

256 disablePowerControl () ;

257 }

258 if (! ((dnp_ 1 & (1 << 1)) == 0)) {
259 signal = 0O;

260 Ml Power = 1;

261 disablePowerControl () ;

262 }

263 }

264 }

265

266 if((inp 3 & (1 << 0)) == 0){

267 pulseCount_1 = 0;

268 }

269 if((inp 3 & (1 << 1)) == 0){

270 pulseCount_1 = 0;

271 }

272

273 transmitString ("\r");

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems
Korey Francis 500501327

2024-05-31

274 printDec (angle 1) ;

275 transmitString (" Degrees");

276

277 // transmitString ("\r");

278 // printDec (signal) ;

279 // transmitString (" <- Motor control test");
280

281 // transmitString ("\r");

282 // printDec (inp 3);

283 // transmitString (" <- Limit Switch Test");
284 }

285

286 return 0;

287 '}

288

289 wvoid enablePowerControl (void) { //Counter 0 PWM mode
290 TCCROA = (1 << COMOAl) | (1 << COMOB1) | (1 << WGMO1l) | (1 << WGMO0O) ;
normal operation on digital pins

291 TCCROB = (1 << CS01)| (1 << CS00); //Set divider to 64
292}

293

294 wvoid disablePowerControl (void) { //Counter 0 normal mode
295 TCCROA &= ~ (1 << COMOALl);

296 TCCROA &= ~ (1 << COMOB1);

297 TCCROA &= ~(1 << WGMO1);

298 TCCROA &= ~(1 << WGMOO) ;

299 TCCROB &= ~(1 << CS01);

300 TCCROB &= ~ (1 << CS00);

301 SPI Write 1 (GPIOA,0b00000000);

302 SPI Write 1(GPIOB,0b00000000);

303 }

304

305 wuint8_t Ml (intl6_t Mot Power) {

306

307 intlé_t setting;

308

309 if (Mot Power > 0){ // control the motor direction
310 SPI Write 1(GPIOA,0b00000001);

311 }else if (Mot Power < 0) {

312 SPI Write 1(GPIOA,0b00000010);

313 }

314

315 OCROA = Mot Power;

316

317 return setting;

318

319 }

320

321 wuint8_t M2 (intl6_t Mot Power) {

322

323 intlé_t setting;

324

325 if (Mot Power > 0){ // control the motor direction
326 SPI Write 1(GPIOA,0b00000100);

327 }else if (Mot Power < 0) {

328 SPI Write 1(GPIOA,0b00001000);

329 }

330

331 OCROA = Mot_Power;

332

333 return setting;

334

335 }

336

337 uint8_t M3 (intl6_t Mot Power) {

338

339 intlé_t setting;

340

341 if (Mot Power > 0){ // control the motor direction
342 SPI Write 1(GPIOA,0b00010000);

//Set Fast PWM mode 3,

14

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems
Korey Francis 500501327

2024-05-31

343 }else if (Mot Power < 0) {

344 SPI Write 1(GPIOA,0b00100000);
345 }

346

347 OCROA = Mot Power;

348

349 return setting;

350

351 1}

352

353 uint8_t M4 (intl6_t Mot Power) {

354

355 intlé_t setting;

356

357 if (Mot_Power > 0){ // control the motor direction
358 SPI Write 1(GPIOA,0b01000000);
359 }else if (Mot Power < 0) {

360 SPI Write 1(GPIOA,0b10000000);
361 }

362

363 OCROA = Mot Power;

364

365 return setting;

366

367 }

368

369 uint8_t M5 (intl6_t Mot Power) {

370

371 intlé_t setting;

372

373 if (Mot Power > 0){ // control the motor direction
374 SPI Write 1(GPIOB,0b01000000);
375 }else if (Mot Power < 0) {

376 SPI Write 1 (GPIOB,0b10000000);
377 }

378

379 OCROA = Mot Power;

380

381 return setting;

382

383 1}

384

385

386 int get angle(intlé_t pulseCount) {

387

388 float x;

389

390 // x = pulseCount;

391 x = pulseCount*1.35;

392

393 return x;

394

395 1}

396

397 /%

398 Encoder Timer Functions

399 */

400 wvoid initTimer2 (void) {

401

402 TCCR2A |= (1<<COM2Al) | (1<<COM2AO0) ;
403 TCCR2A |= (1<<WGM21);

404 // TCCR2B |= (1<<CS22) | (1<<CS21) | (1<<CS20) ;
405 TCCR2B |= (1<<CS21);

406 TIMSK2 |= (1<<OCIEZ2A);

407 TIFR2 |= (1<<OCF2A);

408 OCR2A = 200;

409

410 sei();

411}

412

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

413 /*

414 Functions related to interrupts for encoders
415 */

416

417 ISR(TIMERZ_COMPA vect) {

418

419 phase = get grayCode 1();

420

421 if (phase != phase old) {

422 if ((phase == 0 && phase old == 3)
423 | | (phase == && phase old ==0)
424 | | (phase == 2 && phase old ==1)
425 | | (phase == && phase old ==2)
426) {

427 pulseCount 1 += 1;

428 direction = 1;

429 }

430 else if ((phase == 0 && phase old == 1)
431 | | (phase == 1 && phase old ==2)
432 | | (phase == 2 && phase old ==3)
433 | | (phase == 3 && phase old ==0)
434)|

435 pulseCount 1 -= 1;

436 direction = 0;

437 }

438 phase old = phase;

439 }

440)

441

442 uint8_t get grayCode_1 (void) {

443

444 uint8 t x;

445

446 if((inp 2 & (1 << 0)) == 0){

447 channelA = 0;

448 }

449 else {

450 channelA = 1;

451 }

452

453 if((inp 2 & (1 << 1)) == 0){

454 channelB = 0;

455 }

456 else {

457 channelB = 1;

458 }

459

460 if ((channelA == 0)&& (channelB == 0)) {
461 x = 0;

462 } else if ((channelA == 0)&&(channelB == 1)) {
463 x = 1;

464 } else if((channelA == 1) &&(channelB == 1)) {
465 X = 2;

466 } else if ((channelA == 1)&&(channelB == 0)) {
467 x = 3;

468 }

469

470 return x;

471}

472

473 //MCP23S17 Functions
474

475 wvoid SPI_Write_ 1 (unsigned char addr, unsigned char data)

476 |

477 // Activate the CS pin

478 SPI_PORT &= ~(1<<SPI CS);

479 // Start MCP23S17 OpCode transmission

480 SPDR = SPI_SLAVE ID | ((SPI_SLAVE ADDR 1 << 1)
481 // Wait for transmission complete

482 while (! (SPSR & (1<<SPIF)));

& OxOE) |

SPI SLAVE WRITE;

16

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems
Korey Francis 500501327

& OxO0E) |

& OxOE) |

& OxOE) |

2024-05-31

483 // Start MCP23S17 Register Address transmission
484 SPDR = addr;

485 // Wait for transmission complete

486 while (! (SPSR & (1<<SPIF)));

487

488 // Start Data transmission

489 SPDR = data;

490 // Wait for transmission complete

491 while (! (SPSR & (1<<SPIF)));

492 // CS pin is not active

493 SPT_PORT |= (1<<SPI _CS);

494 1}

495

496 wvoid SPI Write 2 (unsigned char addr,unsigned char data)
497 {

498 // Activate the CS pin

499 SPI_PORT &= ~(1<<SPI_CS);

500 // Start MCP23S17 OpCode transmission

501 SPDR = SPI SLAVE ID | ((SPI_SLAVE ADDR 2 << 1)
502 // Wait for transmission complete

503 while (! (SPSR & (1<<SPIF)));

504 // Start MCP23S17 Register Address transmission
505 SPDR = addr;

506 // Wait for transmission complete

507 while (! (SPSR & (1<<SPIF)));

508

509 // Start Data transmission

510 SPDR = data;

511 // Wait for transmission complete

512 while (! (SPSR & (1<<SPIF)));

513 // CS pin is not active

514 SPT_PORT |= (1<<SPI _CS);

515 '}

516

517 wunsigned char SPI Read 1 (unsigned char addr)
518 {

519 // Activate the CS pin

520 SPI_PORT &= ~(1<<SPI _CS);

521 // Start MCP23S17 OpCode transmission

522 SPDR = SPI SLAVE ID | ((SPI_SLAVE ADDR 1 << 1)
523 // Wait for transmission complete

524 while (! (SPSR & (1<<SPIF)));

525

526 // Start MCP23S17 Address transmission
527 SPDR = addr;

528 // Wait for transmission complete

529 while (! (SPSR & (1<<SPIF)));

530

531 // Send Dummy transmission for reading the data
532 SPDR = 0x00;

533 // Wait for transmission complete

534 while (! (SPSR & (1<<SPIF)));

535

536 // CS pin is not active

537 SPI_PORT |= (1<<SPI_CS);

538 return (SPDR) ;

539 }

540

541 wunsigned char SPI_Read 2 (unsigned char addr)
542 {

543 // Activate the CS pin

544 SPI_PORT &= ~(1<<SPI CS);

545 // Start MCP23S17 OpCode transmission

546 SPDR = SPI SLAVE ID | ((SPI_SLAVE ADDR 2 << 1)
547 // Wait for transmission complete

548 while (! (SPSR & (1<<SPIF)));

549

550 // Start MCP23S17 Address transmission
551 SPDR = addr;

552 // Wait for transmission complete

SPI SLAVE WRITE;

SPI_SLAVE READ;

SPI_SLAVE READ;

17

Toronto Metropolitan University — Chang School of Continuing Education

CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

553 while (! (SPSR & (1<<SPIF)));

554

555 // Send Dummy transmission for reading the data
556 SPDR = 0x00;

557 // Wait for transmission complete

558 while (! (SPSR & (1<<SPIF)));

559

560 // CS pin is not active

561 SPI_PORT |= (1<<SPI_CS);

562 return (SPDR) ;

563 }

564

565 //= = = = = = = = = = = = & & & & & o o o o o o o o o o o o o oo o oo oo oo o o oo
566

567 /*

568 Functions for debugging via UART below

569 */

570 //Convert number to ASCII Decimal representation and write to UART
571 wvoid printDec (float num) {

572

573 char stringDec[40];

574 sprintf (stringDec, "%$£f", num) ;

575

576 transmitString (stringDec) ;

577 '}

578 //Write to UART one byte at a time

579 wvoid transmitString (char *x) {

580

581 int 1 = 0;

582

583 while (1>=0) {

584 data = x[1i];

585

586 if (data == 0){

587 return;

588 }

589 transmitByte (data) ;

590 it++;

591 }

592 }

593 //Write one byte to UART

594 void transmitByte (char data) {

595 while (! (UCSROA & (1 << UDREO))); // Wait for empty transmit buffer
596 UDRO = data; // Start transmission by writing to UDRO register
597 }

598

599 wvoid initUART (uintl6_t baud) {

600 unsigned int ubrr = F_CPU/16/ (baud)-1;

601 //Normal speed mode UBRR formula

602 UBRROH = (unsigned char) (ubrr >> 8);

603 // shift MSB and store in UBRROH

604 UBRROL = (unsigned char) ubrr;

605 // store LSB in UBRROL

606 UCSROB = (1 << RXENO) | (1 << TXENO) ;

607 // Enable transmitter/receiver

608 UCSROC = (1 <<UCSz00) | (1 <<ucszo01l);

609 //8-Bit Characters, 0 Stop bits, No parity
610 _delay ms(10);

611 }

18

Toronto Metropolitan University — Chang School of Continuing Education
CKRE 150 — Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

Appendix B — References

TicTacToe.c
e https://www.geeksforgeeks.org/tic-tac-toe-game-in-c/

Capturing Camera Images with CircuitPython
e https://learn.adafruit.com/capturing-camera-images-with-circuitpython

Using Serial Peripheral Interface (SPI) Master and Slave with Atmel AVR Microcontroller
e https://www.ermicro.com/blog/?p=1050

Image Processing in C
e Dwayne Phillips, Image Processing in C, Second Edition, R & D Publications, 1994

Hacking the OV7670 camera module (SCCB cheat sheet inside)

e https://embeddedprogrammer.blogspot.com/2012/07/hacking-ov7670-camera-module-sccb-
cheat.html

Make Your Own Camera
e https://www.instructables.com/Make-Your-Own-Camera/

How to Use OV7670 Camera Module with Arduino

e https://circuitdigest.com/microcontroller-projects/how-to-use-ov7670-camera-module-with-
arduino

19

