
Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

1

Modular Articulated Tabletop-game System

Introduction
Board games typically require two or more players but assembling a play group for a game is not always

possible due to timing and location constraints. Employing an autonomous robotic system to take the

place of an absent human player can allow a single human to enjoy a gaming session at any time. Robotic

systems also make it possible for human players who are not physically present or who may have mobility

constraints to participate in tabletop gaming.

This project aims to develop a robotic platform that can allow a human to play a two-person board game

such as Tic-Tac-Toe or Chess against an automated system. The Modular Articulated Tabletop-game

System (M. A.T.S.) will be capable of seeing a game board, analyzing the board position, algorithmically

determining the optimal next move based on user defined parameters, and operating a robotic arm to

make the algorithmically determined move.

The project aims to be expandable to other board games, therefore a modular approach is taken in

developing the code. As such, the first game the completed system is designed to play is Tic-Tac-Toe. The

game of Tic-Tac-Toe is considered solved1 and writing a program to play it perfectly is relatively trivial

when compared with the challenge of developing a program to play Chess or Go at a human level or to

play more complex games involving cards, dice, and pieces of different sizes, shapes and colours. More

complex games can be added to the system in future versions once the proof-of-concept version playing

Tic-Tac-Toe has been successfully implemented.

Function Description
M.A.T.S is able to perform many of the same functions as a human opponent. It has a computer vision

system to examine a game board and interpret what it sees as a game state. An on-board game engine

will determine the next best move. The game engine will be configurable to change the difficulty or

playstyle of the system thus affecting the next-best-move algorithm. An articulated robotic platform will

make moves based on the output of the game engine.

The user will be able to configure the game engine via two input buttons to select the game, difficulty and

turn order. A switch will allow the user to turn the system on and off. LEDs will indicate the user’s selection

(future versions will employ LCD screens for improved usability). The LEDs will also indicate when the

system is in a “waiting position” (i.e. when the system is waiting for the human to confirm it has made a

move) and when the system is in a “running position” (i.e. when the system is analyzing the board,

deciding which move to make, and operating the robotic arm).

The system will be consistently watching the game board for new game states to determine when the

human has made a move. When it is in the waiting position it will read the state of the game board every

five seconds and if it detects a new valid board configuration has been created it will switch to the running

1. A solved game is one where if both players play without making mistakes, the game is guaranteed to result
in a either A) a draw or B) a win for a pre-determined player based on initial conditions such as the game’s setup and
the turn order. An elegant demonstration of perfect play strategy for Tic-Tac-Toe was drawn by Randall Munroe and
can be seen here: https://xkcd.com/832/

https://xkcd.com/832

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

2

position automatically. The user can also indicate that they have made a move or chosen to skip their turn

via a button press. If the system detects an invalid game state this will be indicated to the human player

via the user interface LEDs.

When M.A.T.S. has made a move, it will return to the waiting position. On shutdown, the system will

return to an “off” position. The off position returns the robotic arm’s encoders to a baseline position for

accurate encoder reading in future activations. It also prevents the system from responding to sensor

inputs. On startup, M.A.T.S. will run through a calibration cycle to ensure that all of its motors are properly

connected and to establish a zero point for each joint’s encoder. The calibration cycle will ensure that the

platform operates consistently even if it was shut down improperly (i.e. if there was a sudden loss of

power preventing the arm from entering an off position).

Project Requirements

Knowledge
Achieving full functionality of the system will require knowledge of the following topics:

1. Articulated Robotic Platforms

The basic functionality of the system requires a robotic platform that will be operated based on

the input from the game engine. The platform will be sufficiently flexible and powerful that it can:

a. Smoothly transition through a series of positions

b. Utilize a gripper or similar pick-and-place actuator to manipulate game pieces

The user’s experience with the overall system will also be improved by the robotic system

remaining compact and robust (i.e. the system should occupy a small footprint on a desktop and

be able to withstand small bumps or jostles from regular use. Likewise, cables should be securely

fastened and kept free of moving components to avoid damage and jamming.

The robotic platform will be an articulated robotic arm with multiple degrees of freedom. The arm

will be electrically actuated by DC motors.

2. Computer Vision

The system requires the game engine to be able to see the game board and translate the image

to a game state. The system will capture an image of the game board. Pattern recognition

algorithms will differentiate the game board, player one’s pieces and player two’s pieces. The

vision system converts the captured image into a game-state from the identified patterns. The

computer vision should operate at minimum in well-lit conditions. It will be required to distinguish

between pieces of different players by analyzing the black/white gradients of the image. The initial

functionality of the pattern recognition system will be to identify dark shapes (circles and squares)

on a light background with a dark 3x3 grid superimposed on the light background. Future

iterations can increase the complexity of the identified shapes, background, lighting conditions,

colour, etc.

3. Game Engine

The system’s “mind” can be divided into two parts. The game engine is the module of the system

which decides where to move the robotic platform to next. This is done by analyzing the game-

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

3

state captured by the vision system and determining the optimal next move based on a pre-

programmed algorithm. The game engine will utilize a simple backtracking Min/Max approach.

This approach assigns a score to all possible moves based on the board’s state and determines

which move is best for the opposing human player. It then selects the move that the minimizes

the score for the human player’s potential moves. There are many examples of such a program

available for free and this project, rather than creating one from scratch, will adapt an existing

program to take game states as an input rather than individual player moves.

The game engine’s output will be a specific position or series of positions that is then passed to

the motor controller module.

4. Motor Controller

The second part of the system’s “mind” is the motor controller. It decides how to move based on

the output of the Game Engine module. The motor controller integrates feedback from digital

encoders at each joint in the robotic arm into its control function to determine the position and

speed of the robotic platform’s joints as it moves in 3D space.

A transfer function will be written for each joint to control the speed of the arm’s motions. The

transfer function will enable precise and consistent control of each joint position and prevent the

arm from undershooting or overshooting its target position. Such functionality is crucial to ensure

the overall system functions as intended.

5. Microcontroller

If the Game Engine and Motor Controller comprise the system’s “mind” then the Microcontroller

can be considered the system’s “brain. Communication protocols such as Serial Peripheral

Interface (SPI) and I2C are used to facilitate communication between the microcontroller and the

peripherals selected for the project.

6. System Integration

The modules and related hardware in topics 1 through 5 will be integrated in order to achieve full

system functionality. This involves utilizing new code, existing code and 3rd party software as well

as connecting components from different manufacturers.

Hardware
The project will utilize the following hardware components:

1. Romeo Development Board V1.3

The Romeo Board V1.3 is an all-in-one development board with an Atmega328p microcontroller

at its core. It has 16 digital I/O pins and an additional 6 analog IO pins (which may be configured

as digital pins) and is capable of supporting peripherals via SPI and I2C.

2. MCP23S17 Expander with Serial Interface

The MCP23S17 provides a 16-bit general purpose I/O expansion via an SPI connection. Multiple

MCP23S17 expanders can be connected via the same SPI connection to a master device. This

project will utilize two expanders to achieve the necessary number of I/O pins for the peripherals.

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

4

If more pins are required, a third expander can be added at low cost and with minimal

modification to the project’s code.

3. Robotic Arm Edge (OWI 535)

The base of the platform will be an articulated robotic arm manufactured by OWIKIT. The Robotic

Arm is actuated by five DC motors. One motor is located in the “base”, one is located in the

“gripper”, and there is one at each joint: the “shoulder, the “elbow” and the “wrist”. The location

of each motor is labelled in Figure 1.

Figure 1: Fully assembled Robotic Arm Edge without any modifications.

4. L298 motor Driver

The L298 motor driver is used to supply the necessary power to the Robotic Arm’s motors. Signals

from the microcontroller (two signals per motor) allows the motor driver to operate the motors

forwards and backwards by reversing their supplied polarity. Each L298 is capable of operating 2

DC motors independently. As such, this project will require 3 motor drivers in total.

5. KY-040 Rotary Encoder

The KY-040 rotary encoder reads the position of two switches and returns an angular position to

indicate how much its knob has been turned. There are four encoders required for this project:

one for each joint and the base. The position of the robotic arm’s wrist will be determined by

three limit switches due to space limitations.

6. OV7670 Camera Module

The OV7670 Camera module is a low voltage, 0.3 Megapixel camera module. It is capable of

outputting 30 frames per second (though this project will require a much lower framerate). It will

be controlled via the Serial Camera Control Bus (SCCB) which is an I2C interface.

Software
The project will not require any specialized or proprietary software to develop or run. The software will

be written in C using free or open-source libraries and compilers. Third party code may be adapted to the

project when necessary.

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

5

Component Selection
Components were selected for this project by the following criteria in order of decreasing importance:

Functionality, Cost and Availability. For instance, more compact encoders likely exist which would improve

the form and functionality of the robotic arm but these were either prohibitively expensive or had

excessively long lead times. The Ky-040 Rotary Encoders met the requirements of having a physical knob

that could be interfaced with the robotic arm’s joints (with a little creativity), were available quickly and

were inexpensive compared to alternatives.

Assembly

Wiring Diagram
The M.A.T.S. wiring is outlined in Figure 2. Some details have been omitted for clarity.

Figure 2: Wiring Diagram of the M.A.T.S.

OV7670

Romeo

V1.3

M
C

P
23

S1
7

M
C

P
23

S1
7

User interface

switches and

buttons, Motor

Driver 3, Motor 5

Limit Switches 1-7

*Note that Sw 6 - 7

share a common pin

Encoder 1 - 4

Motor Driver 1 - 2,

Motor 1 - 4

9 V

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

6

Robotic Arm Edge
The Robotic Arm Edge will be assembled per the manufacturer’s instructions. The encoders and limit

switches will be attached to their respective joints via a combination of 3D printed and handcrafted

components. Due to space constraints, two gears were 3D printed to interface the rotation of the base

motor with the base encoder. The methods used to interface the KY-040 encoders to the Robotic Arm can

be seen in Figure 3.

Module Testing
Unit tests and regression tests will be designed and implemented during the project’s development.

Robotic Arm Edge
1. Basic robotic arm functionality including:

a. Opening and closing the gripper;

b. Rotating the base 270 degrees;

c. Rotating the joints a minimum 180 degrees;

Motor Drivers
1. Powering motors from steady state DC supply.

2. Smooth operation of the motors via Pulse Width Modulation (PWM).

Limit Switches
1. Detecting limit switch button push.

Digital Encoders
1. Reading angular position of robotic arm joints.

MCP23S17
1. Reading inputs and writing to outputs of MCP23S17 via the SPI connection.

2. Controlling multiple MCP23S17 expanders via the SPI connection.

Tic-Tac-Toe Engine
1. Checking the current game state against the previous game state for validity.

2. Selecting the next best move based on a game state input.

3. Changing the parameters used to select the next best move based on a user input.

Figure 3: Interfacing the encoders with the Robotic Arm Edge

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

7

Vision System
1. Reading inputs from OV7670 camera module via the I2C connection and save the inputs as a

Bitmap image.

2. Detect board shape and piece shapes based on brightness values in the captured Bitmap image.

3. Detect when the board has been changed.

4. Create game state based on visual input.

User Interface
1. The switch powers off the system (enters a state where it does not respond to any inputs or

outputs) and returns the robotic arm to an off position.

2. The buttons select the game mode and increase or decrease the difficulty setting of the game

engine.

3. The game mode and difficulty setting are displayed via LEDs.

Regression Testing
Regression testing is a required step during development of the M.A.T.S. In order to ensure previous bugs

do not recur as features are implemented. Regression testing also validates the system’s primary

functions.

Module Integration
The following regression test cases will validate modules have been successfully implemented to the

project.

1. Resetting encoder angular position to zero when limit switch button push is detected.

2. Reading encoder inputs and limit switch inputs via the MCP23S17.

3. Controlling motor drivers via the MCP23S17 and a control system that limits motor speed and

runtime based on the target encoder position.

4. Passing a game state from the vision system to the Tic-Tac-Toe Engine.

5. Passing a movement command from the Tic-Tac-Toe Engine to the motor controller to actuate

the joints in pre-determined manner based on the game move selected.

6. The startup and shutdown cycles reset the encoder positions and turn the sensors on or off.

Typical Use Cases
Regression testing will be used to validate the system functions as intended.

1. On startup the robotic arm performs a calibration cycle that resets all encoder positions.

2. After the calibration cycle is complete, the user selects a game mode and difficulty setting via the

user interface.

3. The vision system detects when the user has made a move and passes the game state to the game

engine. The game engine determines the next best move based on the user selected difficulty

setting and passes the required position of the robotic arm to the movement to the motor

controller.

4. When the game engine detects the game state is a victory for either the human player or for the

M.A.T.S., the motor controller runs either a “defeated shake” or “victory nod” cycle and returns

to the “waiting” position.

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

8

Corner Cases
1. If the game engine detects an invalid game state, the LEDs light up in a specified pattern to

indicate to the human player that an invalid move has been made.

Prototype Challenges
The current prototype of the MATS faces the following challenges:

1. Articulation of the robotic arm requires several wired connections. The wires presently used

during development are moderately too stiff and occasionally bind on the robotic arm or detach

from the component pins during operation. Development of future prototypes will use more

flexible connections and/or an alternative method of securement.

2. During development of the prototype, dead pins were discovered on two components: One of

the MCP23S17 expanders and one of the encoders. These components require replacement prior

to further development.

Conclusion
The current prototype of the MATS is shown in Figure 4.

Current Functionality
The current functionality of the M.A.T.S. is as follows:

1. The robotic arm is fully assembled with the requisite peripherals.

2. Two MCP23S17 expanders have been successfully integrated to the Romeo development board

to increase the number of GPIO pins available for peripherals.

Figure 4: Fully assembled robotic arm prototype

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

9

3. L298 Motor drivers and the associated motors can be successfully powered from a steady state

9V DC power supply. Five motors can be controlled by the user via push buttons and switches.

4. Seven limit switches have been integrated at the robotic arm’s various joints.

5. A program has been developed to read the output of the encoders.

Outstanding Work
The following work remains to be completed:

1. All encoders are to be integrated to the motor controller program via the MCP23S17 GPIO

expanders. Testing for complete runtime functionality will ensure the encoders consistently read

the same angular positions.

2. The robotic arm will move through set positions based on user input and the encoder values.

3. The OV7670 camera module is to be connected to the Romeo development board. The camera

module’s connection will be successful once it outputs a clear image of sufficient resolution for

future processing.

4. Functions will be written to capture the output of the camera module as a bitmap image.

5. Functions will be written to analyze the light/dark values of the captured image for pre-

determined patterns.

6. Functions will be written to output the identified patterns as a game state.

7. A game engine will be adapted from existing code to analyze a game state and select the optimal

next move.

8. A function will be written to pass the optimal next move to the motor controller function as an

input.

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

10

Appendix A – Source Code

Main_6.c
 1 //Libraries used

 2 #include <avr/io.h>

 3 #include <util/delay.h>

 4 #include <stdlib.h>

 5 #include <stdio.h>

 6 #include <avr/interrupt.h>

 7

 8 //Definitions

 9 #define F_CPU 16000000UL

 10 //SET STICTION HERE:

 11 #define F_STICTION 50 //forward stiction threshold for PWM

 12 #define R_STICTION 50 //reverse stiction threshold for PWM

 13

 14 #define R_ANGLE 0 //reset angle to zero degrees

 15

 16 //Definitions for MCP23S17 peripherals

 17 #define SPI_PORT PORTB

 18 #define SPI_DDR DDRB

 19 #define SPI_CS PB2

 20 // MCP23S17 SPI Slave Device

 21 #define SPI_SLAVE_ID 0x40

 22 #define SPI_SLAVE_ADDR_1 0x00 // A2=0,A1=0,A0=0

 23 #define SPI_SLAVE_ADDR_2 0x01 // A2=0,A1=0,A0=1

 24 #define SPI_SLAVE_WRITE 0x00

 25 #define SPI_SLAVE_READ 0x01

 26 // MCP23S17 Registers Definition for BANK=0

 27 #define IODIRA 0x00

 28 #define IODIRB 0x01

 29 #define IOCONA 0x0A

 30 #define GPPUA 0x0C

 31 #define GPPUB 0x0D

 32 #define GPIOA 0x12

 33 #define GPIOB 0x13

 34 #define GPB0 0x00

 35 #define GPB1 0x01

 36 //Function declarations

 37

 38 //Functions for MCP23S17

 39 void SPI_Write_1(unsigned char addr,unsigned char data);

 40 void SPI_Write_2(unsigned char addr,unsigned char data);

 41 unsigned char SPI_Read_1(unsigned char addr);

 42 unsigned char SPI_Read_2(unsigned char addr);

 43

 44

 45 //Functions for Motor Control via PWM

 46 void enablePowerControl(void); //Initialize counter for PWM output

 47 void disablePowerControl(void); //Disable PWM counter

 48

 49 uint8_t M1(int16_t Mot_Power); //Change duty cycle M1

 50 uint8_t M2(int16_t Mot_Power); //Change duty cycle M2

 51 uint8_t M3(int16_t Mot_Power); //Change duty cycle M1

 52 uint8_t M4(int16_t Mot_Power); //Change duty cycle M2

 53 uint8_t M5(int16_t Mot_Power); //Change duty cycle M1

 54 uint8_t lin_int(int16_t x); //linear interpolation

 55

 56 //Functions for debugging with USART

 57 void transmitString(char *x);

 58 void transmitByte(char data);

 59 void printDec(float num);

 60 void initUART(uint16_t baud);

 61

 62 void initTimer2(void);

 63 uint8_t get_grayCode_1(void);

 64 //uint8_t get_grayCode_2(void);

 65 //uint8_t get_grayCode_3(void);

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

11

 66 //uint8_t get_grayCode_4(void);

 67 int get_angle(int16_t pulseCount);

 68

 69 //GLOBAL VARIABLES

 70 //uint8_t pinD;

 71 uint16_t dutyCycle;

 72 uint16_t baud = 9600; //for intefacing with UART

 73 char data; //for intefacing with UART

 74 //For encoder control

 75 uint8_t channelA, channelB; //, channelC, channelD, channelE, channelF, channelG, channelH;

 76 volatile uint8_t phase, phase_old, direction;

 77 volatile int_fast16_t pulseCount_1; //, pulseCount_2, pulseCount_3, pulseCount_4 = 0;

 78

 79 uint8_t inp_1, inp_2, inp_3;

 80

 81 int main(void)

 82 {

 83 // Motor control variables

 84 int angle_1; //, angle_2, angle_3, angle_4;

 85 uint8_t pwm_1, pwm_2, pwm_3, pwm_4, pwm_5;

 86 int16_t M1_Power = 60;

 87 int signal;

 88

 89 // unsigned char inp_1,inp_2;

 90

 91 ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1);

 92 // Free running Mode

 93 ADCSRB = 0x00;

 94 // Disable digital input on ADC0 (PC0)

 95 DIDR0 = 0x01;

 96 ADMUX=0x00; // Select Channel 0 (PC0)

 97

 98 // Initial the AVR ATMega328P SPI Peripheral

 99 // Set MOSI (PB3),SCK (PB5) and PB2 (SS) as output, others as input

100 SPI_DDR = (1<<PB3)|(1<<PB5)|(1<<PB2);

101 // CS pin is not active

102 SPI_PORT |= (1<<SPI_CS);

103

104 // Enable SPI, Master, set clock rate fck/64

105 SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR1);

106

107 // Initial the MCP23S17 SPI I/O Expander

108 SPI_Write_1(IOCONA,0x28); // I/O Control Register: BANK=0, SEQOP=1, HAEN=1 (Enable

Addressing)

109 SPI_Write_1(IODIRA,0x00); // GPIOA 0-7 As Output

110 SPI_Write_1(IODIRB,0x3F); // GPIOB 0-5 As Input

111 SPI_Write_1(GPPUB,0xFF); // Enable Pull-up Resistor on GPIOB

112 SPI_Write_1(GPIOA,0x00); // Reset Output on GPIOA

113

114 SPI_Write_2(IOCONA,0x28); // I/O Control Register: BANK=0, SEQOP=1, HAEN=1 (Enable

Addressing)

115 SPI_Write_2(IODIRA,0xFF); // GPIOA As 0-7 Input

116 SPI_Write_2(IODIRB,0xFF); // GPIOB As 0-7 Input

117 SPI_Write_2(GPPUA,0xFF); // Enable Pull-up Resistor on GPIOB

118 SPI_Write_2(GPPUB,0xFF); // Enable Pull-up Resistor on GPIOB

119 // SPI_Write_2(GPIOA,0x00); // Reset Output on GPIOA

120

121 initUART(baud);

122 initTimer2();

123

124 transmitString("\rSignal = \n");

125

126 while(1){

127

128 inp_1=SPI_Read_1(GPIOB); // Button 1-4 and Sw 1 and Sw 2

129 inp_2=SPI_Read_2(GPIOB); // Encoder Inputs

130 inp_3=SPI_Read_2(GPIOA); // Limit Switches. Note that pin 7 is dead

131

132 //Motor 1 and Motor 2

133 if((!((inp_1 & (1 << 4)) == 0)) & (!((inp_1 & (1 << 5)) == 0))){

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

12

134 if(signal==0) {

135 if((inp_1 & (1 << 0)) == 0) {

136 signal = 1;

137 enablePowerControl();

138 pwm_1 = M1(100);

139 angle_1 = get_angle(pulseCount_1);

140 }

141 if((inp_1 & (1 << 1)) == 0) {

142 signal = 2;

143 enablePowerControl();

144 pwm_1 = M1(-M1_Power);

145 angle_1 = get_angle(pulseCount_1);

146 }

147 if((inp_1 & (1 << 2)) == 0) {

148 signal = 3;

149 enablePowerControl();

150 pwm_2 = M2(M1_Power);

151 angle_2 = get_angle(pulseCount_2);

152 }

153 if((inp_1 & (1 << 3)) == 0) {

154 signal = 4;

155 enablePowerControl();

156 pwm_2 = M2(-70);

157 angle_2 = get_angle(pulseCount_2);

158 }

159 }

160

161 else {

162 if(!((inp_1 & (1 << 0)) == 0)) {

163 signal = 0;

164 M1_Power = 1;

165 disablePowerControl();

166 }

167 if(!((inp_1 & (1 << 1)) == 0)) {

168 signal = 0;

169 M1_Power = 1;

170 disablePowerControl();

171 }

172 if(!((inp_1 & (1 << 2)) == 0)) {

173 signal = 0;

174 M1_Power = 1;

175 disablePowerControl();

176 }

177 if(!((inp_1 & (1 << 3)) == 0)) {

178 signal = 0;

179 M1_Power = 1;

180 disablePowerControl();

181 }

182 }

183 }

184 // Motor 3 and Motor 4

185 if(((inp_1 & (1 << 4)) == 0) & (!((inp_1 & (1 << 5)) == 0))){

186 if(signal==0) {

187 if((inp_1 & (1 << 0)) == 0) {

188 signal = 5;

189 enablePowerControl();

190 pwm_3 = M3(100);

191 angle_3 = get_angle(pulseCount_3);

192 }

193 if((inp_1 & (1 << 1)) == 0) {

194 signal = 6;

195 enablePowerControl();

196 pwm_3 = M3(-M1_Power);

197 angle_3 = get_angle(pulseCount_3);

198 }

199 if((inp_1 & (1 << 2)) == 0) {

200 signal = 7;

201 enablePowerControl();

202 pwm_4 = M4(M1_Power);

203 angle_4 = get_angle(pulseCount_4);

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

13

204 }

205 if((inp_1 & (1 << 3)) == 0) {

206 signal = 8;

207 enablePowerControl();

208 pwm_4 = M4(-70);

209 angle_4 = get_angle(pulseCount_4);

210 }

211 }

212

213 else {

214 if(!((inp_1 & (1 << 0)) == 0)) {

215 signal = 0;

216 M1_Power = 1;

217 disablePowerControl();

218 }

219 if(!((inp_1 & (1 << 1)) == 0)) {

220 signal = 0;

221 M1_Power = 1;

222 disablePowerControl();

223 }

224 if(!((inp_1 & (1 << 2)) == 0)) {

225 signal = 0;

226 M1_Power = 1;

227 disablePowerControl();

228 }

229 if(!((inp_1 & (1 << 3)) == 0)) {

230 signal = 0;

231 M1_Power = 1;

232 disablePowerControl();

233 }

234 }

235 }

236

237 // Motor 5

238 if(((inp_1 & (1 << 4)) == 0) & ((inp_1 & (1 << 5)) == 0)){

239 if(signal==0) {

240 if((inp_1 & (1 << 0)) == 0) {

241 signal = 9;

242 enablePowerControl();

243 pwm_5 = M5(100);

244 }

245 if((inp_1 & (1 << 1)) == 0) {

246 signal = 10;

247 enablePowerControl();

248 pwm_5 = M5(-M1_Power);

249 }

250 }

251

252 else {

253 if(!((inp_1 & (1 << 0)) == 0)) {

254 signal = 0;

255 M1_Power = 1;

256 disablePowerControl();

257 }

258 if(!((inp_1 & (1 << 1)) == 0)) {

259 signal = 0;

260 M1_Power = 1;

261 disablePowerControl();

262 }

263 }

264 }

265

266 if((inp_3 & (1 << 0)) == 0){

267 pulseCount_1 = 0;

268 }

269 if((inp_3 & (1 << 1)) == 0){

270 pulseCount_1 = 0;

271 }

272

273 transmitString("\r");

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

14

274 printDec(angle_1);

275 transmitString(" Degrees");

276

277 // transmitString("\r");

278 // printDec(signal);

279 // transmitString(" <- Motor control test");

280

281 // transmitString("\r");

282 // printDec(inp_3);

283 // transmitString(" <- Limit Switch Test");

284 }

285

286 return 0;

287 }

288

289 void enablePowerControl(void) { //Counter 0 PWM mode

290 TCCR0A = (1 << COM0A1)|(1 << COM0B1)|(1 << WGM01)|(1 << WGM00); //Set Fast PWM mode 3,

normal operation on digital pins

291 TCCR0B = (1 << CS01)|(1 << CS00); //Set divider to 64

292 }

293

294 void disablePowerControl(void) { //Counter 0 normal mode

295 TCCR0A &= ~(1 << COM0A1);

296 TCCR0A &= ~(1 << COM0B1);

297 TCCR0A &= ~(1 << WGM01);

298 TCCR0A &= ~(1 << WGM00);

299 TCCR0B &= ~(1 << CS01);

300 TCCR0B &= ~(1 << CS00);

301 SPI_Write_1(GPIOA,0b00000000);

302 SPI_Write_1(GPIOB,0b00000000);

303 }

304

305 uint8_t M1(int16_t Mot_Power){

306

307 int16_t setting;

308

309 if(Mot_Power > 0){ // control the motor direction

310 SPI_Write_1(GPIOA,0b00000001);

311 }else if(Mot_Power < 0){

312 SPI_Write_1(GPIOA,0b00000010);

313 }

314

315 OCR0A = Mot_Power;

316

317 return setting;

318

319 }

320

321 uint8_t M2(int16_t Mot_Power){

322

323 int16_t setting;

324

325 if(Mot_Power > 0){ // control the motor direction

326 SPI_Write_1(GPIOA,0b00000100);

327 }else if(Mot_Power < 0){

328 SPI_Write_1(GPIOA,0b00001000);

329 }

330

331 OCR0A = Mot_Power;

332

333 return setting;

334

335 }

336

337 uint8_t M3(int16_t Mot_Power){

338

339 int16_t setting;

340

341 if(Mot_Power > 0){ // control the motor direction

342 SPI_Write_1(GPIOA,0b00010000);

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

15

343 }else if(Mot_Power < 0){

344 SPI_Write_1(GPIOA,0b00100000);

345 }

346

347 OCR0A = Mot_Power;

348

349 return setting;

350

351 }

352

353 uint8_t M4(int16_t Mot_Power){

354

355 int16_t setting;

356

357 if(Mot_Power > 0){ // control the motor direction

358 SPI_Write_1(GPIOA,0b01000000);

359 }else if(Mot_Power < 0){

360 SPI_Write_1(GPIOA,0b10000000);

361 }

362

363 OCR0A = Mot_Power;

364

365 return setting;

366

367 }

368

369 uint8_t M5(int16_t Mot_Power){

370

371 int16_t setting;

372

373 if(Mot_Power > 0){ // control the motor direction

374 SPI_Write_1(GPIOB,0b01000000);

375 }else if(Mot_Power < 0){

376 SPI_Write_1(GPIOB,0b10000000);

377 }

378

379 OCR0A = Mot_Power;

380

381 return setting;

382

383 }

384

385

386 int get_angle(int16_t pulseCount){

387

388 float x;

389

390 // x = pulseCount;

391 x = pulseCount*1.35;

392

393 return x;

394

395 }

396

397 /*

398 Encoder Timer Functions

399 */

400 void initTimer2(void){

401

402 TCCR2A |= (1<<COM2A1)|(1<<COM2A0);

403 TCCR2A |= (1<<WGM21);

404 // TCCR2B |= (1<<CS22)|(1<<CS21)|(1<<CS20);

405 TCCR2B |= (1<<CS21);

406 TIMSK2 |= (1<<OCIE2A);

407 TIFR2 |= (1<<OCF2A);

408 OCR2A = 200;

409

410 sei();

411 }

412

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

16

413 /*

414 Functions related to interrupts for encoders

415 */

416

417 ISR(TIMER2_COMPA_vect){

418

419 phase = get_grayCode_1();

420

421 if(phase != phase_old){

422 if((phase == 0 && phase_old == 3)

423 ||(phase == 1 && phase_old ==0)

424 ||(phase == 2 && phase_old ==1)

425 ||(phase == 3 && phase_old ==2)

426){

427 pulseCount_1 += 1;

428 direction = 1;

429 }

430 else if((phase == 0 && phase_old == 1)

431 ||(phase == 1 && phase_old ==2)

432 ||(phase == 2 && phase_old ==3)

433 ||(phase == 3 && phase_old ==0)

434){

435 pulseCount_1 -= 1;

436 direction = 0;

437 }

438 phase_old = phase;

439 }

440 }

441

442 uint8_t get_grayCode_1(void){

443

444 uint8_t x;

445

446 if((inp_2 & (1 << 0)) == 0){

447 channelA = 0;

448 }

449 else {

450 channelA = 1;

451 }

452

453 if((inp_2 & (1 << 1)) == 0){

454 channelB = 0;

455 }

456 else {

457 channelB = 1;

458 }

459

460 if((channelA == 0)&&(channelB == 0)){

461 x = 0;

462 } else if((channelA == 0)&&(channelB == 1)){

463 x = 1;

464 } else if((channelA == 1)&&(channelB == 1)){

465 x = 2;

466 } else if((channelA == 1)&&(channelB == 0)){

467 x = 3;

468 }

469

470 return x;

471 }

472

473 //MCP23S17 Functions

474

475 void SPI_Write_1(unsigned char addr, unsigned char data)

476 {

477 // Activate the CS pin

478 SPI_PORT &= ~(1<<SPI_CS);

479 // Start MCP23S17 OpCode transmission

480 SPDR = SPI_SLAVE_ID | ((SPI_SLAVE_ADDR_1 << 1) & 0x0E)| SPI_SLAVE_WRITE;

481 // Wait for transmission complete

482 while(!(SPSR & (1<<SPIF)));

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

17

483 // Start MCP23S17 Register Address transmission

484 SPDR = addr;

485 // Wait for transmission complete

486 while(!(SPSR & (1<<SPIF)));

487

488 // Start Data transmission

489 SPDR = data;

490 // Wait for transmission complete

491 while(!(SPSR & (1<<SPIF)));

492 // CS pin is not active

493 SPI_PORT |= (1<<SPI_CS);

494 }

495

496 void SPI_Write_2(unsigned char addr,unsigned char data)

497 {

498 // Activate the CS pin

499 SPI_PORT &= ~(1<<SPI_CS);

500 // Start MCP23S17 OpCode transmission

501 SPDR = SPI_SLAVE_ID | ((SPI_SLAVE_ADDR_2 << 1) & 0x0E)| SPI_SLAVE_WRITE;

502 // Wait for transmission complete

503 while(!(SPSR & (1<<SPIF)));

504 // Start MCP23S17 Register Address transmission

505 SPDR = addr;

506 // Wait for transmission complete

507 while(!(SPSR & (1<<SPIF)));

508

509 // Start Data transmission

510 SPDR = data;

511 // Wait for transmission complete

512 while(!(SPSR & (1<<SPIF)));

513 // CS pin is not active

514 SPI_PORT |= (1<<SPI_CS);

515 }

516

517 unsigned char SPI_Read_1(unsigned char addr)

518 {

519 // Activate the CS pin

520 SPI_PORT &= ~(1<<SPI_CS);

521 // Start MCP23S17 OpCode transmission

522 SPDR = SPI_SLAVE_ID | ((SPI_SLAVE_ADDR_1 << 1) & 0x0E)| SPI_SLAVE_READ;

523 // Wait for transmission complete

524 while(!(SPSR & (1<<SPIF)));

525

526 // Start MCP23S17 Address transmission

527 SPDR = addr;

528 // Wait for transmission complete

529 while(!(SPSR & (1<<SPIF)));

530

531 // Send Dummy transmission for reading the data

532 SPDR = 0x00;

533 // Wait for transmission complete

534 while(!(SPSR & (1<<SPIF)));

535

536 // CS pin is not active

537 SPI_PORT |= (1<<SPI_CS);

538 return(SPDR);

539 }

540

541 unsigned char SPI_Read_2(unsigned char addr)

542 {

543 // Activate the CS pin

544 SPI_PORT &= ~(1<<SPI_CS);

545 // Start MCP23S17 OpCode transmission

546 SPDR = SPI_SLAVE_ID | ((SPI_SLAVE_ADDR_2 << 1) & 0x0E)| SPI_SLAVE_READ;

547 // Wait for transmission complete

548 while(!(SPSR & (1<<SPIF)));

549

550 // Start MCP23S17 Address transmission

551 SPDR = addr;

552 // Wait for transmission complete

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

18

553 while(!(SPSR & (1<<SPIF)));

554

555 // Send Dummy transmission for reading the data

556 SPDR = 0x00;

557 // Wait for transmission complete

558 while(!(SPSR & (1<<SPIF)));

559

560 // CS pin is not active

561 SPI_PORT |= (1<<SPI_CS);

562 return(SPDR);

563 }

564

565 //-_-

566

567 /*

568 Functions for debugging via UART below

569 */

570 //Convert number to ASCII Decimal representation and write to UART

571 void printDec(float num) {

572

573 char stringDec[40];

574 sprintf(stringDec,"%f",num);

575

576 transmitString(stringDec);

577 }

578 //Write to UART one byte at a time

579 void transmitString (char *x) {

580

581 int i = 0;

582

583 while(i>=0){

584 data = x[i];

585

586 if (data == 0){

587 return;

588 }

589 transmitByte(data);

590 i++;

591 }

592 }

593 //Write one byte to UART

594 void transmitByte (char data) {

595 while (!(UCSR0A & (1 << UDRE0))); // Wait for empty transmit buffer

596 UDR0 = data; // Start transmission by writing to UDR0 register

597 }

598

599 void initUART(uint16_t baud) {

600 unsigned int ubrr = F_CPU/16/(baud)-1;

601 //Normal speed mode UBRR formula

602 UBRR0H = (unsigned char) (ubrr >> 8);

603 // shift MSB and store in UBRR0H

604 UBRR0L = (unsigned char) ubrr;

605 // store LSB in UBRR0L

606 UCSR0B = (1 << RXEN0) | (1 << TXEN0);

607 // Enable transmitter/receiver

608 UCSR0C = (1 <<UCSZ00) | (1 <<UCSZ01);

609 //8-Bit Characters, 0 Stop bits, No parity

610 _delay_ms(10);

611 }

Toronto Metropolitan University – Chang School of Continuing Education

CKRE 150 – Issues in Robotics and Embedded Systems

Korey Francis 500501327

2024-05-31

19

Appendix B – References

TicTacToe.c
• https://www.geeksforgeeks.org/tic-tac-toe-game-in-c/

Capturing Camera Images with CircuitPython
• https://learn.adafruit.com/capturing-camera-images-with-circuitpython

Using Serial Peripheral Interface (SPI) Master and Slave with Atmel AVR Microcontroller
• https://www.ermicro.com/blog/?p=1050

Image Processing in C
• Dwayne Phillips, Image Processing in C, Second Edition, R & D Publications, 1994

Hacking the OV7670 camera module (SCCB cheat sheet inside)
• https://embeddedprogrammer.blogspot.com/2012/07/hacking-ov7670-camera-module-sccb-

cheat.html

Make Your Own Camera
• https://www.instructables.com/Make-Your-Own-Camera/

How to Use OV7670 Camera Module with Arduino
• https://circuitdigest.com/microcontroller-projects/how-to-use-ov7670-camera-module-with-

arduino

